Tactile In-Hand Pose Estimation through Perceptual Inference

Abstract

Tactile pose estimation is an active area of research in the field of robotic manipulation. With the advent of high-resolution vision-based tactile sensors, robots are now able to acquire detailed tactile information within their grippers, which can be used for in-hand pose estimation. However, current methods typically rely on prior models of the grasped objects or need extensive training to generalize to diverse objects. In this study, we explore the potential of using active inference for tactile pose estimation that adapts to various objects without vast training. We first validate our approach on a single object to assess whether active inference can be effectively applied to in-hand pose estimation. Subsequently, we test our approach on multiple objects to evaluate its generalizability to unseen objects. Our methodology was assessed through a simple tilt estimation task in a simulated environment.

Publication
The 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems: Workshop on World Models and Predictive Coding in Cognitive Robotics (IROS 2023 Workshop, Spotlight talk)
Tatsuya Kamijo
Tatsuya Kamijo
MEng Student at UTokyo / Research Intern at OMRON SINIC X

My research focuses on robot learning, visuo-tactile learning, and manipulation.